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Abstract. The connectivity of the con�guration space has been a valuable con-

cept in the motion planning for single robots in both known and unknown terrains.

We show here that n-connectivity plays a similar role for mobile robot teams in

providing algorithms for terrain model acquisition in unknown terrains. A bound

on the connectivity degree of the free-space, reected in that of a navigation course,

provides us an estimate of the size of a robot team that is e�ective for the terrain.

We consider an unknown planar polygonal terrain. The robots are point-sized and

equipped with visual sensors which acquire all visible parts of the terrain by scan

operations executed from their locations. The performance is measured by the num-

ber of sensor (scan) operations which are assumed to be the most time-consuming

of all the robot operations. We show that the Voronoi diagrams and trapezoidal

decomposition methods yield solutions for e�cient terrain model acquisition by a

2- and 3-robot team using visual sensors.

1 Introduction

The terrain model acquisition problem deals with robots autonomously ac-

quiring a complete model of an unknown terrain by systematically visiting

portions of it. There are several motivations for this problem. Once the terrain

model is completely acquired, the navigation algorithms of known terrains

can be employed for path planning with two potential advantages. First, the

sensors may be switched o� (at least in theory) in future navigation, saving

the time and resources involved in the acquisition and processing of sensor

data. Second, navigation paths with the shortest distance between the start

and goal positions may be computed using the terrain model. In applications

involving mobile robots in indoor environments for repetitive operations, typ-

ically a human operator is in charge of model building, which is tedious and

time-consuming. Robots capable of autonomous terrain model acquisition

(even in only small parts of the terrain) can assist in the model building

process.

The terrain model acquisition problem (TMAP) for polyhedral or polyg-

onal terrains has been solved using a single robot in [14,13,18,12] for the case

of a discrete vision sensor. TMAP for a robot equipped with a continuous

vision sensor has been solved in [9,12]. TMAP for team of robots has been

recently addressed by a number of investigators. Ishioka et al. [6] described
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a cooperative map generation by heterogeneous autonomous mobile robots

(also see Dudek et al. [3]). A cooperative recognition system for the environ-

ment using multiple robots has been developed by Ishiwata et al. [7]. Rao et

al [17,16] addressed this problem in the formulation of convergent algorithms

using visibility graphs. In particular, if all obstacles are convex, the sensing

time was shown to be essentially reduced by a factor of 1=n for n = 2; 3; 4. The
disadvantage of the visibility graph method is that robots must be capable

of navigating very close to the obstacles.

In this paper, we show that the navigational structures that keep the

robots away from the obstacle boundaries can also be utilized by an n-robot
team for n = 2; 3. There are other problems in unknown terrains studied for

mobile robot teams. The study by Harinarayan and Lumelsky [5] indicates

that the simultaneous navigation of two robots cannot be solved if no \coop-

eration" is present between them. Note that our overall objective is di�erent

from theirs in two ways, namely: (a) we are interested in terrain model ac-

quisition, and (b) we wish to explore the cooperation mechanisms so that the

objective can be achieved more e�ectively by a team of robots instead of a

single robot.

There are obvious limiting cases in deploying mobile robot teams for the

terrain model acquisition. In \very bad " cases, e. g. the entire team of robots

is initially located at one end of a \long narrow polygonal corridor", there

may not be any advantage in employing a team. Robots are forced to form

a single cluster, thereby obviating any advantages of a team. However, if

the terrain has \branches", a team is likely to acquire the terrain faster

than one robot. In this paper, we discuss general results that indicate the

conditions under which a robot team is more e�ective from an algorithmic

perspective. We show that for 2- and 3-robot teams the navigation structures

based on the Voronoi diagram and trapezoidal decomposition methods reduce

the sensing time, while keeping the robots wary from obstacle boundaries.

More generally, we show that the n-connectivity of the navigation course,

which reects the connectivity structure of the con�guration space, enables

an n-robot team to reduce the sensor time by a factor of 1=n compared

to a single robot. We show that Voronoi diagram and dual graph based on

trapezoidal decomposition are 2-connected if the obstacles are all convex.

For 3-robot team, these navigational courses o�er good solutions although

they do not reduce the sensor time by 1=3. For general polygonal terrains,
the reductions may not be as dramatic, but a reduction in sensor time is

achieved depending on the connectivity structure of the con�guration space.

Preliminaries are described in Section 2. Algorithmic methods for terrain

model acquisition by a single robot are discussed in Section 3. The concepts of

n-connectivity and its implications on robot team exploration are discussed

in Section 4. The cases of convex and non-convex polygonal obstacles are

discussed in Section 5 and 6, respectively.
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2 Preliminaries

We consider a �nite two-dimensional terrain cluttered by a �nite and non-

intersecting set of polygonal obstacles. An obstacle vertex is convex if the

angle included inside the obstacle by the edges that meet at this vertex is

less than 180 degrees; otherwise the obstacle vertex is concave. Two points p
and q in plane are visible to each other if the line segment joining p and q,
denoted by pq, lies entirely outside the interior of all obstacle polygons.

The robot, denoted by R, is point-sized and equipped with a vision sensor.
A discrete vision sensor is characterized by a scan operation: a scan operation

performed from a position (point) p returns the visibility polygon of p that

consists of all points in the terrain visible to p (Fig. 1). We assume that the

most time consuming-part of the robot operation is the scan operation. In

vision-based robots, each scan may take several minutes including the time

required to acquire and process the sensory data. The total sensing time is

given by the number of scan operations performed by the robot(s) in sequence.

The robots communicate with each other via a wireless network.

p

visibility polygon

obstacle polygon

Fig. 1. Visibility polygon

from location p.

3 Navigational Courses For TMAP

An algorithmic paradigm to solve TMAP has been proposed by Rao [10]. A

�nite graph called the navigation course �, is used as an underlying structure.
Initially navigation course is not known, but it is incrementally constructed

from the sensor operations by the robot systematically visiting all vertices of

the navigation course.

In order that a graph exploration algorithm terminates, the navigation

course must contain a �nite number of edges and vertices, i.e., must sat-

isfy �niteness property. It must satisfy the terrain-visibility property which

requires that every point in the free-space is visible from some vertex of

the navigation course. It must also satisfy the connectivity, more precisely

1-connectivity, property which requires that every pair of vertices be con-

nected by a graph path on the navigation course. We require that adjacency

list of a �-vertex can be constructed from the information of a single scan;

this property is called the local-constructibility. For a navigation course � that
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satis�es the properties of �niteness, connectivity, terrain-visibility and local-

constructibility, any graph search algorithm (e.g. depth-�rst search) can be

employed to solve the navigation and the terrain model acquisition problems.

O1

O2

O3

(b)(a)

Fig. 2. Restricted visibility graph.

We now discuss three examples of the navigation course. The restricted

visibility graph, RVG = (V;E) is de�ned as follows [13]: (a) V is the set of

all convex obstacle vertices, (b) an edge (v1; v2), for v1; v2 2 V represents the

fact that the line joining v1 and v2 either corresponds to an obstacle edge or

does not intersect any obstacle polygon. See Fig. 2 for an example of RVG.

O1

O2
O3

O1

O2
O3

X Convex hull

Extended hull

(a) (b)

Fig. 3. Voronoi Diagram of Terrain

The second structure V D is based on the Voronoi diagram, and can be

described as follows [18]. Consider terrain O of Fig. 3. The convex hull CH
of O is the minimal polygonal region that encloses all obstacle polygons.

The extended hull EH is the convex polygonal region obtained by pushing

out the edges of CH by a distance x. The Voronoi diagram of the terrain

is the locus of points that are closest to at least two points on the obstacle

boundary. The Voronoi diagram consists of straight line segments and second
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order curve segments. The V D is obtained by taking the union of the Voronoi

diagram contained in EH , and the boundary of EH as in Fig. 3(b).

(a) Terrain

(b) Dual Graph of Terrain

Fig. 4. Dual Graph of Terrain

There are many other ways of generating navigational courses, based on

dual graphs corresponding to decompositions such as trapezoidal decomposi-

tion, triangulation, etc., of free space [12] (also see [11]). Consider the terrain

of Fig. 4. We decompose free-space into trapezoids by sweeping a horizontal

line. When this line reaches a vertex, we extend (at most two and at least

one) line segments from this vertex into free-space until obstacle boundary is

reached or to in�nity. The free-space is then decomposed into trapezoids by

these line segments. Then the dual graph DG is obtained by denoting each

trapezoid by a node and joining two nodes by an edge if and only if the

corresponding trapezoids share a boundary edge.

The terrain model acquisition problem was �rst formulated and solved

for two and three dimensional terrains by Rao et al [14] using the visibility

graph. When the robot is circular in shape, Rao and Iyengar [13] proposed

a navigation course based on the visibility graph. For a robot of polygonal

shape with an ability to translate in any direction, Foux et al. [1993] pro-

posed a navigation algorithm. See [15] for a survey (also see [2]). The terrain

model acquisition method based on the extended visibility graph method was

proposed for a team of two, three, and four robots in [16].

4 n-Connectivity and TMAP

For single robots, 1-connectivity in su�cient to solve TMAP. More generally,

connectivity of the con�guration space plays a vital role in path planning for

single robots [8]. However, 1-connectivity is not su�cient to ensure the e�ec-

tiveness of a team, especially in explorations. Consider the scenario depicted

in Figure 5, where node v is an cut point [4] of the navigation course, whose

removal results in a disconnected navigation course. The robots, represented

by un�lled circles, are located on one side of v and the vertices to be explored

(shown in dark circles) are located on the other side. The vertex v must be
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explored �rst before getting to the other unexplored vertices, and hence acts

as a bottleneck.

A graph G = (V;E), for jV j � n + 2 is n-connected if it cannot be dis-

connected by removing n� 1 vertices [1]. For example, a cycle is 2-connected

since removal of any vertex still leaves the rest of the cycle connected. Note

that if the graph has a cut point, it is not 2-connected. The following are

important consequences of n-connectivity:

(a) The degree of every vertex is at least n, if not by removing at most n� 1

neighbors of this vertex, it can be disconnected from the rest of the graph.

(b) If the graph has at least 2n nodes, then for every two disjoint sets V1 and
V2, there exist n disjoint paths joining these two sets of points [4].

The �rst consequence shows that RVG, VD and DG are not 3-connected.

RVG is shown to be 2-connected [17], and we will show that VD and DG are

2-connected in the next section.

The second consequence is important in robot team exploration as follows.

Consider two robots R1 and R2 located at the vertices of a 2-connected

navigation course. There are two vertices u and v to be explored such that

they are adjacent to explored part of the graph. Consider that R1 has chosen

to visit u next. Then R2 can get to v without going through u. In other

words, R2 can work around R1, when the latter makes the decisions on its

own about which vertex to explore next. Assuming that travel time is small,

the robots can perform scan operations in parallel, in which case the overall

exploration time is halved.

v

cut point 

robot

unexplored vertex

Fig. 5. Illustration of limitations of 1-

connectivity.

The overall algorithm for a team of n robots is based on the robots execut-

ing a graph search algorithm in a cooperative manner using an n-connected
navigation course. At any step, each robot has the same version of an in-

complete navigation course. For the team of robots R1; R2; : : : ; Rn, let R1

have the highest priority, R2 have second highest priority, and so on. Each

robot performs a scan operation and obtains the resultant visibility polygon.

Each robot computes its own adjacency list and communicates it to the other

robots. R1 sends to R2 its next destination d1 which is one of the nodes ad-

jacent to its present location. Then R2 marks d1 as visited and computes its

next destination d2. R2 communicates d1 and d2 to R3, and d2 to R1. This

process is repeated until Rn computes its destination. Then the robots move

to their chosen destinations and repeat the algorithm. Since the navigation
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course is n-connected, all the n robots can get to their respective chosen ver-

tices without being blocked by an unexplored vertex. Informally speaking,

R2 works around R1, R3 works around R2 and R1, and so on. This algo-

rithm terminates when all known vertices have been visited; the connectivity

property together with the terrain-visibility property ensure that the terrain

model is completely acquired.

5 Convex Polygonal Terrains

In this section, we consider terrains composed of convex polygonal obstacles,

and the navigational courses RV G, V D and DG.

5.1 Two-Robot Team

In the algorithm of previous section, R1 is guaranteed to �nd a destination

at each step, due to the connectivity of the navigation course, RVG, VD or

DG. We now establish that R2 can always �nd its destination, by showing

the 2-connectivity.

RVG is shown to be 2-connected in [16]. For V D and DG, 2-connectivity
can be shown as follows. The proof method is similar in both cases, and we

illustrate the case of VD. For each convex obstacle O1, one can trace the

cycle of VD that immediately surrounds it. Consider an adjacent obstacle O2

such that it's cycle shares at least an edge with the that of O1; then there are

three cycles corresponding to each of Oi's and the cycle formed by the union

of the two cyles minus the common edges. By extending this argument, it

follows that any two vertices of VD belong to some cycle, possibly formed

from cycles of di�erent obstacles. Thus, there are two vertex disjoint paths

between every pair of vertices, which shows that VD is 2-connected (Theorem

5.10 [4]).

Note that 2-connectivity implies that the navigation course cannot be

disconnected by removing a single vertex. Indeed, let the next destination

chosen by R1 at any step be denoted by v. By connectivity, if there is an

unvisited node (other than v), then there is at least one unvisited node ad-

jacent to the paths traced by R1 or R2. If not, all the unvisited nodes can

only be reached via v, which makes v a cut point; this in turn contradicts

the 2-connectedness. Thus by the time R1 performs dN=2e scan operations,

R2 would have performed scan operations from the remaining nodes, where

N is the number of nodes of the navigation course.

5.2 Three-Robot Teams

The Extended Visibility Graph (EVG) is the RVG augmented as follows. The

extended hull is obtained by expanding the convex hull of the obstacles by

a �xed non-zero amount. Then the vertices of the RVG on the convex hull
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are connected to the corresponding vertices on the extended hull as shown in

Fig. 6. The EVG of a terrain cluttered by a �nite number of convex polygonal

obstacles is shown to be 4-connected and, in general is not 5-connected [16].

O

O

1

2

(a)  terrain (b) EVG

extended  hull

Fig. 6. De�nition of the EVG.

Although, VD and DG are only 2-connected, a 3-robot team can still

be e�ective as shown in Figure 7 for DG. Here R1 and R2 are forced to

stay together at vertices u and v, and after that the three robots explore in

parallel. In this case N = 11, and the sensing time is 4, even though there

are only two vertices with degree 3. A bound on the sensing time can be

obtained as follows. Let N2 denote the vertices with degree 2. And N �N2 is

the number of vertices with degree at least 3. Nodes with degree 2 can force

two robots to stay together, and the other nodes do not. Hence the total

sensing time is upper-bounded by

N �N2

3
+N2=2 = N=3 +N2=6:

Note that for 3-robot team the best possible sensing time is N=3. If N2 = 0,

i.e. the graph is 3-connected, the bound is N=3. If N2 = N , i.e. the graph is

2-connected, the bound is N=2, which is the best possible. In a general case,

the e�ect of the additional term N2=6, which adds to the sensing time, is

quite moderate.

6 General Polygonal Terrains

For a general polygonal terrain, the navigational course consists of trees which

are only 1-connected. The performance of the algorithm for general terrains

depends on the number of concave regions and their depths. To tackle this sit-

uation, a hierarchical decomposition of the navigation course into n-connected
and (n�1)-or-less-connected components was proposed in [17]; although their

main focus is on visibility graph, their decomposition is valid for any navi-

gation course. The performance for the n (= 2; 3) robot team is expressed in
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Fig. 7. 3-robot team using DG.

terms of the sizes of n-connected components, and the sizes and diameters

of (n� 1)-or-less connected components. This analysis highlights the critical

properties such as 2- and 3-connectivity, depth of hierarchy, etc. that support

or impede the parallel acquisition of the terrain model.

7 Conclusions

The connectivity of the con�guration space has been a valuable concept in

the terrain model acquisition by single robots. We showed here that the n-
connectivity plays a similar role for robot teams. The methods based on

visibility graphs, Voronoi diagrams and trapezoidal decompositions are shown

to yield solutions for e�cient terrain model acquisition by a 2- and 3-robot

team using visual sensors. This paper is only a �rst step towards establishing

the algorithmic and analytical aspects of mobile robot teams for terrain model

acquisition. More generally, it would be of future interest to investigate the

role of n-connectivity for other applications such as cooperative navigation

and search. It would be interesting to see if n-connectivity holds for general

con�gurations for non-point robots. Here, only the sensor time is considered

here as a measure of performance and the estimates are conservative. We

believe that alternative characterizations and better performance estimates

are possible. The recently studied class of competitive algorithms for the

TMAP by guarantee that the distance traversed by a single robot is bounded

by a factor times the minimum possible value achieved if the terrain model is

available. Improving the performance of this type of algorithms by employing

a team of robots will be of future interest.
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